N-(Phenylseleno)Phthalimide: A Useful Reagent For The α -Selenylation Of Ketones And Aldehydes.

Janine Cossy*, Nathalie Furet

Laboratoire de Chimie Organique, Associé au C.N.R.S., E.S.P.C.I, 10 rue Vauquelin, 75231 Paris Cédex 05. France

Key words: Ketones, \alpha-phenylselenoketones, N-(phenylseleno)phthalimide,

Abstract: \(\alpha\)-phenylselenoketones and \(\alpha\)-phenylselenoaldehydes are obtained with a good regioselectivity by treatment of the corresponding ketones or aldehydes with N-(phenylseleno)phthalimide and p-toluenesulfonic acid

2-Phenylselenoketones and 2-phenylselenoaldehydes are versatile intermediates which can be converted selectively into a variety of different ketones and aldehydes or to the corresponding α,β -unsaturated carbonyl compounds. Most methods for their preparation involve nucleophilic displacement such as the reaction of ketone enolates with phenylselenyl chloride ¹, phenylselenyl bromide ², benzeneselenyl trifluoroacetate ³ or with N-(phenylseleno)phtalimide ⁴.

Electrophilic additions have also been used to produce α -phenylselenocarbonyl compounds. N,N-Diethylbenzeneselenamide reacts selectively with aldehydes to produce the corresponding α -phenylselenoaldehydes ⁵. In addition, α -phenylselenoketones have been obtained by electrophilic addition of phenylselenyl trifluoroacetate or phenylselenyl bromide in the presence of trifluoroacetate ². Alternatively silyl enol ether react readily with phenylselenyl bromide to give the corresponding α -phenylselenoketones ⁶. A one step α -phenylselenylation of ketones with phenylselenyl chloride has also been realized but this reaction proceeds in low yield and is not general ⁷.

In this letter we report a very simple and general one-step method for the conversion of ketones and aldehydes into the corresponding mono α -phenylselenyl derivatives.

$$R_1$$
 R_2 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_6 R_7 R_8 R_9 R_9

Our results are summarized in the Table

When a 1:1 mixture of a ketone or an aldehyde and N-(phenylseleno)phthalimide in CH_2Cl_2 was allowed to react with 1 equivalent of p-toluenesulfonic acid (TsOH) and 3 equivalents of H_2O at 20°C for 12 h, the corresponding product of α -monoselenation was formed and could be isolated in good yield after solvent evaporation and flash chromatography on silica gel. With non-symmetrical ketones, the reaction is regioselective giving preferentially the most substituted isomer probably because of the formation of the most stable enol intermediate which is quenched by N-(phenylseleno)phthalimide.

Compared with the other one-step methods of α -phenylselenation of carbonyl compounds ⁴, our method is extremely simple and can be applied to base-sensitive polyfunctional systems.

Table : Formation of α -phenylselenoketones and aldehydes.

Starting material	Products (yield %)	mp °C
°	2 (70)	63
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	12 (80)	-
3	13 (80)	-
4	14 (70) 14' (15)°	-
550	PhS*11 15 (60)°	-
6 co 2 Me	50 2 Me SePh	-
NH-	17 (98)	-
	18 (50)	-
9	Seph 19 (60)	-

REFERENCES:

I-Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1973, 95, 5813-5815. 2-Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434-5447. 3- Clive, D. L. J. J. Chem. Soc., Chem. Commun. 1973, 695-696. 4-a) Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704-3706. b) Jackson, W. P.; Ley, S. V.; Morton, J. A. Tetrahedron Lett. 1981, 22, 2601-2604. 5- Jefson, M.; Meinwald, J. Tetrahedron Lett. 1981, 22, 3561-3564. 6- Ryu, I.; Murai, S.; Niwa, I.; Sonoda, N. Synthesis 1977, 874-876. 7- Sharpless, K. B.; Lauer, R. F.; Teranishi, J. Am. Chem. Soc. 1973, 95, 6137-6139. 8- N-(Phenylseleno)phthalimide was purchased from Aldrich. 9- A mixture of cis-trans isomer is observed by 1H NMR spectra for compound 14' (ratio 17/83) anf for compound 15 (ratio 18/82).